
Media
Computing
Group

iPhone Application Programming
Lab 2: MVC and Delegation + A01

discussion
Nur Al-huda Hamdan

Media Computing Group
RWTH Aachen University

Winter Semester 2015/2016

http://hci.rwth-aachen.de/iphone

http://hci.rwth-aachen.de/iphone

Media
Computing
GroupiPhone Application Programming

• Discuss A01 + demo

• Concepts: debugging with breakpoints, app delegate, life cycle and transition states,
notifications, deinitialization, object graph, optional chaining, type casting

• MVC model

• Concepts: MVC, computed property, NSTimer

• Delegation and protocols + demo

• Introduce A02

2

Learning Objectives

Media
Computing
GroupiPhone Application Programming

• Better than print(), do not clutter code, and can be
disable/enabled

• Customizable: can specify a condition for a break to
happen; the actions at breakpoints, e.g., included log
message and debug command, and specify
“Automatically continue after evaluating”

• Breakpoint navigator gives you overview and control
on breakpoints per class in the app

• More on Xcode debugging tools (reading assignment)

3

Breakpoints for Debugging

https://developer.apple.com/library/watchos/documentation/DeveloperTools/Conceptual/debugging_with_xcode/chapters/quickstart.html#//apple_ref/doc/uid/TP40015022-CH7-SW1

Media
Computing
GroupiPhone Application Programming

• Two levels of states in the app life. When a state changes, an event is fired

• App level in AppDelegate

• UIApplication object reports to its delegate (AppDelegate) the app
transitions and incoming push notifications

• App delegate does app initializations, creates the root view
controller on launch, posts notifications at state transition

• App delegate has no view controller related responsibilities

• View controller level

• View controller encapsulates the coordination of updating the view

• Implements UIViewController state transition functions

• State transitions are evaluated from the view controller perspective

4

App Life Cycle and Transition States
When the Clock.app is launched

	 viewDidLoad

	 viewWillAppear
	 applicationDidBecomeActive

	 viewDidAppear

If I send Clock.app to the background (⇧⌘H)

	 applicationWillResignActive

	 applicationDidEnterBackground

If I bring Clock.app to the foreground

	 applicationWillEnterForeground

	 applicationDidBecomeActive

If I try to kill Clock.app using the Multitasking Bar
(⇧⌘H, twice quickly) while it is in the background 
	 SIGKILL exception (Xcode bug, nothing you can do
about it)

If I try to kill Clock.app using the Multitasking Bar
(⇧⌘H, twice quickly) while it is in the foreground 
	 applicationWillResignActive

If I open Clock.app (instead of killing it)

	 applicationDidBecomeActive

If I open another app instead

	 applicationDidEnterBackground

If I kill Clock.app

	 applicationDidEnterBackground

	 viewWillDisappear

viewDidDisappear
	 applicationWillTerminate

Media
Computing
GroupiPhone Application Programming

• How to achieve object-to-object communication on special events, e.g., app delegate tells
view controller when applicationWillEnterForeground event happens

• Four main design patterns: notifications, KVO, delegation, target-action

5

Responding to Events & Object-to-Object

Media
Computing
GroupiPhone Application Programming

• When an event occurs, an object posts notification
in a broadcasting fashion (doesn't know who
wants it)

• An object (observer) registers itself to receive a
notification (by name) for some event

• The observer implements a function to respond to
the event

• The observer should remove itself if it’s no longer
listening for notifications (deinit, called when the
object will dealloc)

• Application notifications are NOT push
notifcations

6

Notifications
Notification name

Observer 1

Observer 2
Posting object

//Registering for a notification
NSNotificationCenter.defaultCenter().addObserver
(self, selector: "reactToShakeEvent", name:
mySpecialNotificationKey, object: nil)

//Reacting
func reactToShakeEvent(notif:NSNotification) {
print("I receive a notification called \
(notif.name), from \(notif.object), with user
info of length \(notif.userInfo?.count)")

}

https://developer.apple.com/notifications/

Media
Computing
GroupiPhone Application Programming

• This is optional chaining when one object or more are optional

• self.window?.rootViewController?.view.subviews

• If one of the options is nil, this fails graceful (no run time error)

• If all optionals are set, the chain return an optional (even if the object
in request, e.g., subviews, is not optional)

• self.window?.rootViewController?.view.subviews! //compiler error, subviews is not
of type optional

• This is type casting

• Upcasting: object as superclass, or with a literal expression, e.g., 10 as
Int

• Downcasting

• let subclassInstance = object as! subclass downcasts + force
unwarp OR runtime error

• if let subclassInstance = object as? subclass {…}, downcasts or nil

7

Object Graph, Optional Chaining,Type Casting

 //Using the object graph to access deep objects
hierarchies (optional chaining)
 //as means type casting the subview array to an
array of UIView
for subview in
(self.window?.rootViewController?.view.subviews)!
as [UIView]
{

 //type casting the subview to UILable
 if let labelView = subview as? UILabel

 {
 let formatter = NSDateFormatter()
 formatter.timeStyle = .MediumStyle
 labelView.text =
formatter.stringFromDate(NSDate())
 }
}

Using object graph is not

recommended

Question: Why isn't view declared as an optional?

Type checking: object is subclass

or variable is Double

Media
Computing
GroupiPhone Application Programming8

MVC
View ModelController

class RedBird:Bird
Attributes are properties let value =10
Behaviors/rules are methods func fly ()

Representation of the models
Event handling (responds to users

actions)

outlets

delegation or
target-action

Notification
or KVO

model instances

Interpret user actions and
communicate changes to models

Decides how model data is
displayed in the views

Each view controller is responsible
of one screen of views

Media
Computing
GroupiPhone Application Programming

• Similar to notifications, delegation allows the delegate (observer) to respond to events on
behalf of the delegator (posting object)

• Instead of registering for notifications, the delegate has to assign itself as the delegator’s
delegate and declare that will implement the required methods (conform to protocol)

• The main value of delegation is that it allows you to easily customize the behavior of
several objects in one central object

• A delegate can be a data source for the delegator and respond to requests of data

9

Delegation
Delegator
.delegate =

Class DelegatorProtocoladopt Delegate

Media
Computing
GroupiPhone Application Programming

• A protocol defines a blueprint of (instate/type) methods, (instance/
type) properties that suit a particular task or piece of functionality

• The protocol can then be adopted by a class/structs/enum and
provide actual implementation of those requirements (conform to
that protocol)

• Some elements of the protocols can be tagged as optional

• Any conforming type for the fullName protocol must be able to
provide a full name for itself, any FullyNamed type must have a
gettable instance property called fullName of type String.

• The RandomNumberGenerator protocol does not make
assumptions how each random number will be generated, but
requires the generator to provide a standard way to generate a
new random number

• Swift reports an error at compile-time if a protocol requirement is
not fulfilled

10

Protocols
protocol FullyNamed {
 var fullName: String { get }
}

struct Person: FullyNamed {
 var fullName: String
}
let john = Person(fullName: "John Appleseed")

protocol RandomNumberGenerator {
 func random() -> Double
}

class LinearCongruentialGenerator:
RandomNumberGenerator {
 var lastRandom = 42.0
 let m = 139968.0
 let a = 3877.0
 let c = 29573.0
 func random() -> Double {
 lastRandom = ((lastRandom * a + c) % m)
 return lastRandom / m
 }
}
let generator = LinearCongruentialGenerator()
print("Here's a random number: \(generator.random())")

NameOfProtocol (more like an

interface, used instead of multiple

inheritance)

NameofProtocolDeleagte

NameofProtocolDataSource

Media
Computing
GroupiPhone Application Programming

• Part 1

• Change A01 to work with an NSTimer as in the demo

• Apply MVC to A01 by moving the NSTimer to a model class and key-value observing
as a communication method

• Part 2

• Implement a temperature converter app with a UIPickerView

• Apply MVC and delegation

• Create your custom operators for (celsius to fahrenheit) and (fahrenheit to celsius)

11

A02 Temperature Converter

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/AdvancedOperators.html#//apple_ref/doc/uid/TP40014097-CH27-ID28

